Clustering of Deleted Binjai City Government Asset Data Using the K-Means Algorithm

Penulis

  • Chintiya Wahyuni Indah Lestari STMIK Kaputama, Binjai, Sumatera Utara
  • Relita Buaton STMIK Kaputama, Binjai, Sumatera Utara
  • Suria Alam Syahputra STMIK Kaputama, Binjai, Sumatera Utara

DOI:

https://doi.org/10.63893/jetcom.v4i2.306

Kata Kunci:

Asset Data, K-Means Clustering, MATLAB, Binjai City Government

Abstrak

Regional assets are a crucial component in managing local government resources. However, their management often encounters various obastacles, such as the accumulation of unproductive assets and the difficulty of mapping assets that must be written off. The Binjai City Government, through the Regional Finance, Revenue, and Asset Management Agency (BPKPAD), is obliigated to manage its assets, including those that have reached the end of their useful life. However, without in-depth analysis, the management of written-off asset data can become disorganized, potentially hampering the transparency and efficiency of overall asset management. To address these issuses, this study applied the K-Means algorithm with 3, 4, and 5 clusters as a method for grouping deleted asset data. The data characteristics used included the type of item, year of acquisition, and method of acquisition. The test results showed that grouping with 3 clusters resulted in a cluster variance value of 208,6587, indicating a high level of data diversity. With 4 clusters, the cluster variance value decreased to 110,5156, resulting in a better and more compact grouping. Meanwhile, testing with 5 clusters provided the most optimal results, with a cluster variance value of 79,2477. This shows that the use of 5 clusters can minimize the spread of data within each cluster, resulting in higher similarity between data compared to 3 and 4 clusters. Therefore, the application of the K-Means Algorithm to deleted Binjai City Government asset data can assist the data analysis and grouping process, where the best results were obtained in testing with 5 clusters.

 

 

Keywords: Asset Data, K-Means Clustering, MATLAB, Binjai City Government

Referensi

D. O. Setiabudhi, “PENGELOLAAN ASET PEMERINTAH DAERAH DALAM PERSPEKTIF GOOD GOVERNANCE,” 2019.

K. P. Bestari and A. A. Tarigan, “Analisis Sistem Penghapusan Aset / Barang Milik Daerah pada Badan Pengelolaan Keuangan dan Aset Daerah (BPKAD) Provinsi Sumatera Utara,” vol. 3, no. 6, p. 1234, 2022.

S. Hidayatuloh and Y. U. Kasanah, “Strategi Optimalisasi Aset IDLE Dengan Menggunakan Algoritma K-MEAN Clustering.”

F. Juliawati, R. Buaton, R. Saragih, and S. Kaputama, “Pengelompokan Data Mining Penerimaan Bantuan Pangan Non Tunai (BPNT) Menggunakan Metode Clustering (Studi Kasus : Kantor Desa Payabakung Hamparan Perak),” 2023.

A. Ikhwan and N. Aslami, “IMPLEMENTASI DATA MINING UNTUK MANAJEMEN BANTUAN SOSIAL MENGGUNAKAN ALGORITMA K-MEANS,” Jurnal Teknologi Informasi, vol. 4, no. 2, 2020.

L. Azzahra and A. Yasir, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food K-Means Clustering Method in Grouping Sales of Frozen Food Products,” 2024. [Online]. Available: https://jurnal.unity-academy.sch.id/index.php/jirsi/index

L. Widiya, “Penerapan Data Mining Pengelompokan Hasil Diagnosa Pasien BPJS Berdasarkan Usia Menggunakan Metode Clustering (Studi Kasus: RSU Bidadari Binjai) The Application of Data Mining for BPJS Patient Diagnostic Results Grouping by Age Using the Clustering Method (Case Study: RSU Bidadari Binjai),” 2022. [Online]. Available: www.kaputama.ac.id

Y. F. S. Y. Damanik, S. Sumarno, I. Gunawan, D. Hartama, and I. O. Kirana, “Penerapan Data Mining Untuk Pengelompokan Penyebaran Covid-19 Di Sumatera Utara Menggunakan Algoritma K-Means,” Jurnal Ilmu Komputer dan Informatika, vol. 1, no. 2, Nov. 2021, doi: 10.54082/jiki.13.

V. Rapika Sari, E. Buulolo, and K. Kunci ABSTRAK, “Implementasi Algoritma K-Means dengan Normalisasi Sigmoidal Untuk Klastering Data Ternak Sapi,” JIKTEKS, vol. 02, no. 01, pp. 30–42, 2023.

“phenomenon,+budi+cahyono”.

Diterbitkan

2025-08-30