CLASSIFICATION OF HOUSEHOLD VIOLENCE (KDRT) CASES BASED ON CAUSING FACTORS USING CLUSTERING METHOD

Authors

  • Dinda Aprilianda STMIK Kaputama, Binjai, Sumatera Utara
  • Rusmin Saragih STMIK Kaputama, Binjai, Sumatera Utara
  • Darjat Saripurna STMIK Triguna Dharma, Medan, SUmatera Utara

Keywords:

Data mining, K-Means Algorithm, Domestic Violence

Abstract

Domestic violence is a violation of human rights and a crime against human dignity and is a form of discrimination. Therefore, no matter how small the violence committed can be reported as a criminal act that can be processed by law. The Office of Women's Empowerment, Child Protection, Population Control and Family Planning has the task of solving problems that often occur in cases of domestic violence (KDRT) against someone, especially women, which results in physical, sexual, psychological, and/or misery or suffering. household neglect including threats to commit acts, coercion, or unlawful deprivation of liberty within the household sphere. therefore it is necessary to have an application that can process this data based on age, type of violence and causal factors to be used as information specifically about cases of domestic violence so that it is easier for the community to understand later. This was created to overcome the problem of extracting important information from a data set of domestic violence cases based on the causative factors at the agency using the k-means clustering method which will be built later. From the results of research conducted using a sample of 20 data, it can be concluded that the most common data are in cluster 2 with data on cases of domestic violence (KDRT) based on many causal factors with a total of 7 data and located in the age group (X ) is aged 17-25 years, and for the type of violence group (Y) that is carried out is Abuse and the causal factors (Z) which mostly occur due to External Factors / Divorce.

References

Ariyanto, D. (2022). Data Mining Menggunakan Algoritma K-Means untuk Klasifikasi Penyakit Infeksi Saluran Pernafasan Akut. Jurnal Sistim Informasi dan Teknologi, 13–18. https://doi.org/10.37034/jsisfotek.v4i1.117

Dewi, ratna. (2023). Aplikasi Matlab untuk Simulasi Pengolahan Sinyal ( agus Prijono, Ed.; 1 ed.). Zahir Publishing.

Kusrini, & Taufiq Luthfi, E. (2009). ALGORITMA DATA MINING (T. Ari Prabawati, Ed.; 1 ed.). CV Andi Offset.

Muhajarah, K. (2021). Kekerasan Dalam Rumah Tangga (A. Ika S, Ed.; 1 ed.). Haura.

Otong Kadang, M. (2021). Algoritma dan Pemrograman (Abd. K. Muzakir, Ed.; Pertama). Humanities Genius.

Pa, P., Manaor Hara Pardede, A., & Rahmadani, S. (2022). Pengelompakan Data Pencari Kerja Terdaftar Berdasarkan Umur Dan Pendidikan Menggunakan Metode K-means Clustering Di Dinas Tenaga Kerja Dan Perindustrian Perdagangan Kota Binjai. Jurnal Informatika Kaputama (JIK), 6(3).

Prastiwi, H., Pricilia, J., & Raswir, E. (2022). Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM) .

Wahyudi, M., Masitha, Risna Saragih, & Solikhun. (2020). Data Mining(2) (J. Simarmata, Ed.; 1 ed.). Yayasan Kita Menulis.

Wanto, A., Noor Hasan Siregar, M., Perdana Windarto, A., Hartama, D., Sri Rahayu Ginantra, N. luh wiwik, Napitupulu, D., Surya negara, E., Ridwan Lubis, M., Vita dewi, S., & Prianto Cahyo. (2020). DATA MINING ALGORITMA & IMPLEMENTASI (T. Limbong, Ed.; 1 ed.). Yayasan Kita Menulis.

Additional Files

Published

2023-11-23

How to Cite

Aprilianda, D., Saragih, R., & Saripurna, D. . (2023). CLASSIFICATION OF HOUSEHOLD VIOLENCE (KDRT) CASES BASED ON CAUSING FACTORS USING CLUSTERING METHOD. Journal of Mathematics and Technology (MATECH), 2(2), 61–76. Retrieved from http://journal.binainternusa.org/index.php/matech/article/view/146