DATA MINING GROUPING THE FEASIBILITY OF APPLYING FOR CREDIT TO CUSTOMERS USING THE K-MEANS ALGORITHM METHOD ON CV. MOTORBIKE CHOICE
Keywords:
Data_Mining, Filing_Credit, Algorithm_K-Means.Abstract
In the midst of the current era of technological development, many changes have occurred in the field of transportation. Transportation is an important aspect of human life because transportation contributes to daily human life and activities. With the existence of transportation, people can easily reach somewhere far or near. Motorcycles are a means of transportation that is quite popular in the community. CV. Choice of Motors is an individual company engaged in the provision of new or used motorcycle loans. Motorcycle credit is a loan facility that aims to finance the purchase of a motorbike where the source of credit payment comes from income. Customers who apply for credit both individually and as an institution with a maximum financing of up to a certain amount along with the BPKB guarantee for the motorbike purchased. In setting credit policies, companies must first formulate credit standards and credit terms, the data needed as credit requirements include: KTP, income, employment, family cards, and other administrative requirements. Then a field survey will be carried out and then the results of the survey are analysis, after which the results of the analysis are returned to the company. Based on the results of the study, there were 4 groups of 20 data, namely group 1 with 5 data, group 2 with 8 data, and group 3 with 7 data.
References
K. Anam, F. N. Maghfiro, R. P. Amaliyah, H. M. Della, and T. Nurmayasari, “Sistem Informasi Monitoring Peserta Praktek Kerja Lapangan Pada Pdam Surya Sembada Surabaya,” SCAN - J. Teknol. Inf. dan Komun., vol. 15, no. 2, 2020.
P. W. Kesuma, A. Risalah, and B. P. Purba, “Penerapan Data Mining Dalam Proses Pengelompokkan Data Masyarakat Kurang Mampu di Kota Deli Serdang Menggunakan Metode Clustering,” J. Masy. Inform. Sumatera Utara, vol. 10, no. 5, 2020, doi: 10.14710/jmasif.v7i1.10794.
A. Ali and L. Musyfufah, “Klasterisasi Pasien BPJS Dengan Metode K-Means Clustering Guna Menunjang Program Jaminan Kesehatan Nasional Di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,” J. WIYATA Stikes Yayasan Rumah Sakit Dr.Soetomo, vol. 2, no. 1, 2021, doi: 10.47292/joint.v2i2.30.
S. Oktarian, S. Defit, and Sumijan, “Klasterisasi Penentuan Minat Siswa dalam Pemilihan Sekolah Menggunakan Metode Algoritma K-Means Clustering,” J. Inf. dan Teknol., vol. 2, no. 3, 2020, doi: http://www.jidt.org.
S. Butsianto and N. T. Mayangwulan, “Penerapan Data Mining Untuk Prediksi Penjualan Mobil Menggunakan Metode K-Means Clustering,” J. Nas. Komputasi dan Teknol. Inf., vol. 3, no. 3, 2020, doi: 10.32672/jnkti.v3i3.2428.
S. Ramadani, I. Ambarita, and A. M. H. P. Pardede, “Metode K-Means Untuk Pengelompokan Masyarakat Miskin Dengan Menggunakan Jarak Kedekatan Manhattan City Dan Euclidean (Studi Kasus Kota Binjai),” Inf. Syst. Dev., vol. 4, no. 2, Jul. 2019.
P. Asep, “Penerapan Data Mining Menggunakan Algoritma C4 . 5 Dalam Mengukur Tingkat Kepuasan Pasien BPJS,” Pros. Semin. Ris. dan Inf. sains, vol. 2, 2020.
D. A. Fakhri, S. Defit, and Sumijan, “Optimalisasi Pelayanan Perpustakaan terhadap Minat Baca Menggunakan Metode K-Means Clustering,” J. Inf. dan Teknol., 2021, doi: 10.37034/jidt.v3i3.137.
F. N. Dhewayani, D. Amelia, D. N. Alifah, B. N. Sari, and M. Jajuli, “Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM,” J. Teknol. dan Inf., vol. 12, no. 1, pp. 64–77, 2022.
A. F. Ayutrisula and A. Fanani, “Customer Profiling dengan Menggunakan Metode K-Means Euclidean Distance di BPJS Ketenagakerjaan Tanjung Perak,” J. Mhs. Mat. Algebr., vol. 1, no. 1, 2020.
K. A. Ginting, R. Buaton, and M. A. Syari, “Penerapan Data Mining Dalam Pengelompokan Penerimaan Bantuan Untuk UMKM dengan Metode Clustering (Studi Kasus: Kec. Salapian),” J. Inform. Kaputama, vol. 6, no. SEMINAR NASIONAL INFORMATIKA (SENATIKA), pp. 729–738, 2022.
R. Kurniawan, S. Suhada, and R. Dewi, “Penerapan Algoritma K-Means Clustering Dalam Persentase Merokok Pada Penduduk Umur Di Atas 15 Tahun Menurut Provinsi,” J. Sist. Komput. dan Inform., vol. 2, no. 2, 2021.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ruth Natalia Sianturi, Marto Sihombing, Anton Sihombing

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
<p><a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"><img style="border-width: 0;" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" alt="Creative Commons License" /></a><br /><strong>MATECH</strong> This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.</p>